1,157 research outputs found

    Quantum Measurements Are Noncontextual

    Full text link
    Quantum measurements are noncontextual, with outcomes independent of which other commuting observables are measured at the same time, when consistently analyzed using principles of Hilbert space quantum mechanics rather than classical hidden variables.Comment: Minor update of previous version, with comments on the BKS theorem added towards the en

    Quantum Information: What Is It All About?

    Full text link
    This paper answers Bell's question: What does quantum information refer to? It is about quantum properties represented by subspaces of the quantum Hilbert space, or their projectors, to which standard (Kolmogorov) probabilities can be assigned by using a projective decomposition of the identity (PDI or framework) as a quantum sample space. The single framework rule of consistent histories prevents paradoxes or contradictions. When only one framework is employed, classical (Shannon) information theory can be imported unchanged into the quantum domain. A particular case is the macroscopic world of classical physics whose quantum description needs only a single quasiclassical framework. Nontrivial issues unique to quantum information, those with no classical analog, arise when aspects of two or more incompatible frameworks are compared.Comment: 14 pages. v2:Minor changes in title, abstract, Sec. 7. References added and correcte

    Consistent Histories and Quantum Reasoning

    Get PDF
    A system of quantum reasoning for a closed system is developed by treating non-relativistic quantum mechanics as a stochastic theory. The sample space corresponds to a decomposition, as a sum of orthogonal projectors, of the identity operator on a Hilbert space of histories. Provided a consistency condition is satisfied, the corresponding Boolean algebra of histories, called a {\it framework}, can be assigned probabilities in the usual way, and within a single framework quantum reasoning is identical to ordinary probabilistic reasoning. A refinement rule, which allows a probability distribution to be extended from one framework to a larger (refined) framework, incorporates the dynamical laws of quantum theory. Two or more frameworks which are incompatible because they possess no common refinement cannot be simultaneously employed to describe a single physical system.Comment: Latex, 31 page

    The New Quantum Logic

    Full text link
    It is shown how all the major conceptual difficulties of standard (textbook) quantum mechanics, including the two measurement problems and the (supposed) nonlocality that conflicts with special relativity, are resolved in the consistent or decoherent histories interpretation of quantum mechanics by using a modified form of quantum logic to discuss quantum properties (subspaces of the quantum Hilbert space), and treating quantum time development as a stochastic process. The histories approach in turn gives rise to some conceptual difficulties, in particular the correct choice of a framework (probabilistic sample space) or family of histories, and these are discussed. The central issue is that the principle of unicity, the idea that there is a unique single true description of the world, is incompatible with our current understanding of quantum mechanics.Comment: Minor changes and corrections to bring into conformity with published versio
    corecore